64 research outputs found

    An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem

    Get PDF
    The irregular strip packing problem is a combinatorial optimization problem that requires to place a given set of two-dimensional polygons within a rectangular container so that no polygon overlaps with other polygons or protrudes from the container, where each polygon is not necessarily convex. The container has a fixed width, while its length can change so that all polygons are placed in it. The objective is to find a layout of the set of polygons that minimizes the length of the container. We propose an algorithm that separates overlapping polygons based on nonlinear programming, and an algorithm that swaps two polygons in a layout so as to find their new positions in the layout with the least overlap. We incorporate these algorithms as components into an iterated local search algorithm for the overlap minimization problem and then develop an algorithm for the irregular strip packing problem using the iterated local search algorithm. Computational comparisons on representative instances disclose that our algorithm is competitive with other existing algorithms. Moreover, our algorithm updates several best known results

    Packing squares independently

    Full text link
    Given a set of squares and a strip of bounded width and infinite height, we consider a square strip packaging problem, which we call the square independent packing problem (SIPP), to minimize the strip height so that all the squares are packed into independent cells separated by horizontal and vertical partitions. For the SIPP, we first investigate efficient solution representations and propose a compact representation that reduces the search space from Ω(n!)\Omega(n!) to O(2n)O(2^n), with nn the number of given squares, while guaranteeing that there exists a solution representation that corresponds to an optimal solution. Based on the solution representation, we show that the problem is NP-hard, and then we propose a fully polynomial-time approximation scheme (FPTAS) to solve it. We also propose three mathematical programming formulations based on different solution representations and confirm the performance of these algorithms through computational experiments. Finally, we discuss several extensions that are relevant to practical applications.Comment: 15 page

    組合せ最適化問題に対するメタ戦略に関する研究

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・論文博士博士(工学)乙第10101号論工博第3416号新制||工||1146(附属図書館)UT51-99-G578(主査)教授 茨木 俊秀, 教授 岩間 一雄, 教授 加藤 直樹学位規則第4条第2項該当Doctor of EngineeringKyoto UniversityDFA
    corecore